Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack (2304.11436v2)

Published 22 Apr 2023 in cs.CR, cs.AI, and cs.LG

Abstract: Federated Learning with Model Distillation (FedMD) is a nascent collaborative learning paradigm, where only output logits of public datasets are transmitted as distilled knowledge, instead of passing on private model parameters that are susceptible to gradient inversion attacks, a known privacy risk in federated learning. In this paper, we found that even though sharing output logits of public datasets is safer than directly sharing gradients, there still exists a substantial risk of data exposure caused by carefully designed malicious attacks. Our study shows that a malicious server can inject a PLI (Paired-Logits Inversion) attack against FedMD and its variants by training an inversion neural network that exploits the confidence gap between the server and client models. Experiments on multiple facial recognition datasets validate that under FedMD-like schemes, by using paired server-client logits of public datasets only, the malicious server is able to reconstruct private images on all tested benchmarks with a high success rate.

Citations (8)

Summary

We haven't generated a summary for this paper yet.