Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Intent Detection and Active Learning Based Classification (Student Abstract) (2304.11058v1)

Published 22 Feb 2023 in cs.CL and cs.IR

Abstract: Novel intent class detection is an important problem in real world scenario for conversational agents for continuous interaction. Several research works have been done to detect novel intents in a mono-lingual (primarily English) texts and images. But, current systems lack an end-to-end universal framework to detect novel intents across various different languages with less human annotation effort for mis-classified and system rejected samples. This paper proposes NIDAL (Novel Intent Detection and Active Learning based classification), a semi-supervised framework to detect novel intents while reducing human annotation cost. Empirical results on various benchmark datasets demonstrate that this system outperforms the baseline methods by more than 10% margin for accuracy and macro-F1. The system achieves this while maintaining overall annotation cost to be just ~6-10% of the unlabeled data available to the system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.