Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotional Expression Detection in Spoken Language Employing Machine Learning Algorithms (2304.11040v1)

Published 20 Apr 2023 in cs.SD, cs.CL, cs.LG, and eess.AS

Abstract: There are a variety of features of the human voice that can be classified as pitch, timbre, loudness, and vocal tone. It is observed in numerous incidents that human expresses their feelings using different vocal qualities when they are speaking. The primary objective of this research is to recognize different emotions of human beings such as anger, sadness, fear, neutrality, disgust, pleasant surprise, and happiness by using several MATLAB functions namely, spectral descriptors, periodicity, and harmonicity. To accomplish the work, we analyze the CREMA-D (Crowd-sourced Emotional Multimodal Actors Data) & TESS (Toronto Emotional Speech Set) datasets of human speech. The audio file contains data that have various characteristics (e.g., noisy, speedy, slow) thereby the efficiency of the ML (Machine Learning) models increases significantly. The EMD (Empirical Mode Decomposition) is utilized for the process of signal decomposition. Then, the features are extracted through the use of several techniques such as the MFCC, GTCC, spectral centroid, roll-off point, entropy, spread, flux, harmonic ratio, energy, skewness, flatness, and audio delta. The data is trained using some renowned ML models namely, Support Vector Machine, Neural Network, Ensemble, and KNN. The algorithms show an accuracy of 67.7%, 63.3%, 61.6%, and 59.0% respectively for the test data and 77.7%, 76.1%, 99.1%, and 61.2% for the training data. We have conducted experiments using Matlab and the result shows that our model is very prominent and flexible than existing similar works.

Summary

We haven't generated a summary for this paper yet.