Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debiasing Conditional Stochastic Optimization (2304.10613v3)

Published 20 Apr 2023 in cs.LG and stat.ML

Abstract: In this paper, we study the conditional stochastic optimization (CSO) problem which covers a variety of applications including portfolio selection, reinforcement learning, robust learning, causal inference, etc. The sample-averaged gradient of the CSO objective is biased due to its nested structure, and therefore requires a high sample complexity for convergence. We introduce a general stochastic extrapolation technique that effectively reduces the bias. We show that for nonconvex smooth objectives, combining this extrapolation with variance reduction techniques can achieve a significantly better sample complexity than the existing bounds. Additionally, we develop new algorithms for the finite-sum variant of the CSO problem that also significantly improve upon existing results. Finally, we believe that our debiasing technique has the potential to be a useful tool for addressing similar challenges in other stochastic optimization problems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.