Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Representative Trajectories of Dynamical Systems via Domain-Adaptive Imitation (2304.10260v1)

Published 19 Apr 2023 in cs.LG, cs.AI, and cs.RO

Abstract: Domain-adaptive trajectory imitation is a skill that some predators learn for survival, by mapping dynamic information from one domain (their speed and steering direction) to a different domain (current position of the moving prey). An intelligent agent with this skill could be exploited for a diversity of tasks, including the recognition of abnormal motion in traffic once it has learned to imitate representative trajectories. Towards this direction, we propose DATI, a deep reinforcement learning agent designed for domain-adaptive trajectory imitation using a cycle-consistent generative adversarial method. Our experiments on a variety of synthetic families of reference trajectories show that DATI outperforms baseline methods for imitation learning and optimal control in this setting, keeping the same per-task hyperparameters. Its generalization to a real-world scenario is shown through the discovery of abnormal motion patterns in maritime traffic, opening the door for the use of deep reinforcement learning methods for spatially-unconstrained trajectory data mining.

Summary

We haven't generated a summary for this paper yet.