Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning for Picking Cluttered General Objects with Dense Object Descriptors (2304.10108v1)

Published 20 Apr 2023 in cs.RO and cs.CV

Abstract: Picking cluttered general objects is a challenging task due to the complex geometries and various stacking configurations. Many prior works utilize pose estimation for picking, but pose estimation is difficult on cluttered objects. In this paper, we propose Cluttered Objects Descriptors (CODs), a dense cluttered objects descriptor that can represent rich object structures, and use the pre-trained CODs network along with its intermediate outputs to train a picking policy. Additionally, we train the policy with reinforcement learning, which enable the policy to learn picking without supervision. We conduct experiments to demonstrate that our CODs is able to consistently represent seen and unseen cluttered objects, which allowed for the picking policy to robustly pick cluttered general objects. The resulting policy can pick 96.69% of unseen objects in our experimental environment which is twice as cluttered as the training scenarios.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com