Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient High-Order Space-Angle-Energy Polytopic Discontinuous Galerkin Finite Element Methods for Linear Boltzmann Transport (2304.09592v1)

Published 19 Apr 2023 in math.NA and cs.NA

Abstract: We introduce an $hp$-version discontinuous Galerkin finite element method (DGFEM) for the linear Boltzmann transport problem. A key feature of this new method is that, while offering arbitrary order convergence rates, it may be implemented in an almost identical form to standard multigroup discrete ordinates methods, meaning that solutions can be computed efficiently with high accuracy and in parallel within existing software. This method provides a unified discretisation of the space, angle, and energy domains of the underlying integro-differential equation and naturally incorporates both local mesh and local polynomial degree variation within each of these computational domains. Moreover, general polytopic elements can be handled by the method, enabling efficient discretisations of problems posed on complicated spatial geometries. We study the stability and $hp$-version a priori error analysis of the proposed method, by deriving suitable $hp$-approximation estimates together with a novel inf-sup bound. Numerical experiments highlighting the performance of the method for both polyenergetic and monoenergetic problems are presented.

Citations (3)

Summary

We haven't generated a summary for this paper yet.