Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Support and distribution inference from noisy data (2304.09452v2)

Published 19 Apr 2023 in math.ST and stat.TH

Abstract: We consider noisy observations of a distribution with unknown support. In the deconvolution model, it has been proved recently [19] that, under very mild assumptions, it is possible to solve the deconvolution problem without knowing the noise distribution and with no sample of the noise. We first give general settings where the theory applies and provide classes of supports that can be recovered in this context. We then exhibit classes of distributions over which we prove adaptive minimax rates (up to a log log factor) for the estimation of the support in Hausdorff distance. Moreover, for the class of distributions with compact support, we provide estimators of the unknown (in general singular) distribution and prove maximum rates in Wasserstein distance. We also prove an almost matching lower bound on the associated minimax risk.

Summary

We haven't generated a summary for this paper yet.