Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massive Data-Centric Parallelism in the Chiplet Era (2304.09389v3)

Published 19 Apr 2023 in cs.DC and cs.AR

Abstract: Recent works have introduced task-based parallelization schemes to accelerate graph search and sparse data-structure traversal, where some solutions scale up to thousands of processing units (PUs) on a single chip. However parallelizing these memory-intensive workloads across millions of cores requires a scalable communication scheme as well as designing a cost-efficient computing node that makes multi-node systems practical, which have not been addressed in previous research. To address these challenges, we propose a task-oriented scalable chiplet architecture for distributed execution (Tascade), a multi-node system design that we evaluate with up to 256 distributed chips -- over a million PUs. We introduce an execution model that scales to this level via proxy regions and selective cascading, which reduce overall communication and improve load balancing. In addition, package-time reconfiguration of our chiplet-based design enables creating chip products that optimized post-silicon for different target metrics, such as time-to-solution, energy, or cost. We evaluate six applications and four datasets, with several configurations and memory technologies to provide a detailed analysis of the performance, power, and cost of data-centric execution at a massive scale. Our parallelization of Breadth-First-Search with RMAT-26 across a million PUs -- the largest of the literature -- reaches 3021 GTEPS.

Citations (6)

Summary

We haven't generated a summary for this paper yet.