Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The conditional DPP approach to random matrix distributions (2304.09319v3)

Published 18 Apr 2023 in math-ph, cs.NA, math.MP, math.NA, and math.PR

Abstract: We present the conditional determinantal point process (DPP) approach to obtain new (mostly Fredholm determinantal) expressions for various eigenvalue statistics in random matrix theory. It is well-known that many (especially $\beta=2$) eigenvalue $n$-point correlation functions are given in terms of $n\times n$ determinants, i.e., they are continuous DPPs. We exploit a derived kernel of the conditional DPP which gives the $n$-point correlation function conditioned on the event of some eigenvalues already existing at fixed locations. Using such kernels we obtain new determinantal expressions for the joint densities of the $k$ largest eigenvalues, probability density functions of the $k\text{th}$ largest eigenvalue, density of the first eigenvalue spacing, and more. Our formulae are highly amenable to numerical computations and we provide various numerical experiments. Several numerical values that required hours of computing time could now be computed in seconds with our expressions, which proves the effectiveness of our approach. We also demonstrate that our technique can be applied to an efficient sampling of DR paths of the Aztec diamond domino tiling. Further extending the conditional DPP sampling technique, we sample Airy processes from the extended Airy kernel. Additionally we propose a sampling method for non-Hermitian projection DPPs.

Summary

We haven't generated a summary for this paper yet.