Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadruply robust estimation of marginal structural models in observational studies subject to covariate-driven observations (2304.08987v1)

Published 18 Apr 2023 in stat.ME

Abstract: Electronic health records and other sources of observational data are increasingly used for drawing causal inferences. The estimation of a causal effect using these data not meant for research purposes is subject to confounding and irregular covariate-driven observation times affecting the inference. A doubly-weighted estimator accounting for these features has previously been proposed that relies on the correct specification of two nuisance models used for the weights. In this work, we propose a novel consistent quadruply robust estimator and demonstrate analytically and in large simulation studies that it is more flexible and more efficient than its only proposed alternative. It is further applied to data from the Add Health study in the United States to estimate the causal effect of therapy counselling on alcohol consumption in American adolescents.

Summary

We haven't generated a summary for this paper yet.