Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agent-Based Modeling and its Tradeoffs: An Introduction & Examples (2304.08497v1)

Published 6 Apr 2023 in cs.MA and cs.CE

Abstract: Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behaviour of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay or stochastic differential equations supporting derivation of properties of the system behaviour. In this chapter, basic characteristics of agent-based models are introduced, advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed, and two example agent-based infectious disease models are reviewed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. G. Wade McDonald (1 paper)
  2. Nathaniel D. Osgood (6 papers)
Citations (1)

HackerNews