Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Muckenhoupt-type weights and the intrinsic structure in Bessel Setting (2304.07986v3)

Published 17 Apr 2023 in math.CA

Abstract: Fix $\lambda>-1/2$ and $\lambda \not=0$. Consider the Bessel operator (introduced by Muckenhoupt--Stein) $\triangle_\lambda:=-\frac{d2}{dx2}-\frac{2\lambda}{x} \frac d{dx}$ on $\mathbb{R_+}:=(0,\infty)$ with $dm_\lambda(x):=x{2\lambda}dx$ and $dx$ the Lebesgue measure on $\mathbb{R_+}$. In this paper, we study the Muckenhoupt-type weights which reveal the intrinsic structure in this Bessel setting along the line of Muckenhoupt--Stein and Andersen--Kerman. Besides, exploiting more properties of the weights $A_{p,\lambda}$ introduced by Andersen--Kerman, we introduce a new class $\widetilde{A}{p,\lambda}$ such that the Hardy--Littlewood maximal function is bounded on the weighted $Lp_w$ space if and only if $w$ is in $\widetilde A{p,\lambda}$. Moreover, along the line of Coifman--Rochberg--Weiss, we investigate the commutator $[b,R_\lambda]$ with $R_\lambda:=\frac{d}{dx}(\triangle_\lambda){-\frac{1}{2}}$ to be the Bessel Riesz transform. We show that for $w\in A_{p,\lambda}$, the commutator $[b, R_\lambda]$ is bounded on weighted $Lp_w$ if and only if $b$ is in the BMO space associated with $\triangle_\lambda$.

Summary

We haven't generated a summary for this paper yet.