Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reclaimer: A Reinforcement Learning Approach to Dynamic Resource Allocation for Cloud Microservices (2304.07941v1)

Published 17 Apr 2023 in cs.DC and cs.LG

Abstract: Many cloud applications are migrated from the monolithic model to a microservices framework in which hundreds of loosely-coupled microservices run concurrently, with significant benefits in terms of scalability, rapid development, modularity, and isolation. However, dependencies among microservices with uneven execution time may result in longer queues, idle resources, or Quality-of-Service (QoS) violations. In this paper we introduce Reclaimer, a deep reinforcement learning model that adapts to runtime changes in the number and behavior of microservices in order to minimize CPU core allocation while meeting QoS requirements. When evaluated with two benchmark microservice-based applications, Reclaimer reduces the mean CPU core allocation by 38.4% to 74.4% relative to the industry-standard scaling solution, and by 27.5% to 58.1% relative to a current state-of-the art method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.