Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User Perceptions of Automatic Fake News Detection: Can Algorithms Fight Online Misinformation? (2304.07926v1)

Published 17 Apr 2023 in cs.HC and cs.CY

Abstract: Fake news detection algorithms apply machine learning to various news attributes and their relationships. However, their success is usually evaluated based on how the algorithm performs on a static benchmark, independent of real users. On the other hand, studies of user trust in fake news has identified relevant factors such as the user's previous beliefs, the article format, and the source's reputation. We present a user study (n=40) evaluating how warnings issued by fake news detection algorithms affect the user's ability to detect misinformation. We find that such warnings strongly influence users' perception of the truth, that even a moderately accurate classifier can improve overall user accuracy, and that users tend to be biased towards agreeing with the algorithm, even when it is incorrect.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bruno Tafur (2 papers)
  2. Advait Sarkar (25 papers)
Citations (4)