Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Obstacle-Transformer: A Trajectory Prediction Network Based on Surrounding Trajectories (2304.07711v1)

Published 16 Apr 2023 in cs.CV

Abstract: Recurrent Neural Network, Long Short-Term Memory, and Transformer have made great progress in predicting the trajectories of moving objects. Although the trajectory element with the surrounding scene features has been merged to improve performance, there still exist some problems to be solved. One is that the time series processing models will increase the inference time with the increase of the number of prediction sequences. Another lies in which the features can not be extracted from the scene's image and point cloud in some situations. Therefore, this paper proposes an Obstacle-Transformer to predict trajectory in a constant inference time. An ``obstacle'' is designed by the surrounding trajectory rather than images or point clouds, making Obstacle-Transformer more applicable in a wider range of scenarios. Experiments are conducted on ETH and UCY data sets to verify the performance of our model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.