Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Source-Free Unsupervised Domain Adaptation (2304.07374v1)

Published 14 Apr 2023 in cs.CV

Abstract: Existing Source-free Unsupervised Domain Adaptation (SUDA) approaches inherently exhibit catastrophic forgetting. Typically, models trained on a labeled source domain and adapted to unlabeled target data improve performance on the target while dropping performance on the source, which is not available during adaptation. In this study, our goal is to cope with the challenging problem of SUDA in a continual learning setting, i.e., adapting to the target(s) with varying distributional shifts while maintaining performance on the source. The proposed framework consists of two main stages: i) a SUDA model yielding cleaner target labels -- favoring good performance on target, and ii) a novel method for synthesizing class-conditioned source-style images by leveraging only the source model and pseudo-labeled target data as a prior. An extensive pool of experiments on major benchmarks, e.g., PACS, Visda-C, and DomainNet demonstrates that the proposed Continual SUDA (C-SUDA) framework enables preserving satisfactory performance on the source domain without exploiting the source data at all.

Citations (2)

Summary

We haven't generated a summary for this paper yet.