Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretability is a Kind of Safety: An Interpreter-based Ensemble for Adversary Defense (2304.06919v1)

Published 14 Apr 2023 in cs.LG, cs.CR, and cs.CV

Abstract: While having achieved great success in rich real-life applications, deep neural network (DNN) models have long been criticized for their vulnerability to adversarial attacks. Tremendous research efforts have been dedicated to mitigating the threats of adversarial attacks, but the essential trait of adversarial examples is not yet clear, and most existing methods are yet vulnerable to hybrid attacks and suffer from counterattacks. In light of this, in this paper, we first reveal a gradient-based correlation between sensitivity analysis-based DNN interpreters and the generation process of adversarial examples, which indicates the Achilles's heel of adversarial attacks and sheds light on linking together the two long-standing challenges of DNN: fragility and unexplainability. We then propose an interpreter-based ensemble framework called X-Ensemble for robust adversary defense. X-Ensemble adopts a novel detection-rectification process and features in building multiple sub-detectors and a rectifier upon various types of interpretation information toward target classifiers. Moreover, X-Ensemble employs the Random Forests (RF) model to combine sub-detectors into an ensemble detector for adversarial hybrid attacks defense. The non-differentiable property of RF further makes it a precious choice against the counterattack of adversaries. Extensive experiments under various types of state-of-the-art attacks and diverse attack scenarios demonstrate the advantages of X-Ensemble to competitive baseline methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.