Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the State of the Art in Legal QA Systems (2304.06623v3)

Published 13 Apr 2023 in cs.CL

Abstract: Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. Question answering (QA) systems are designed to generate answers to questions asked in human languages. QA uses natural language processing to understand questions and search through information to find relevant answers. QA has various practical applications, including customer service, education, research, and cross-lingual communication. However, QA faces challenges such as improving natural language understanding and handling complex and ambiguous questions. Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. At this time, there is a lack of surveys that discuss legal question answering. To address this problem, we provide a comprehensive survey that reviews 14 benchmark datasets for question-answering in the legal field as well as presents a comprehensive review of the state-of-the-art Legal Question Answering deep learning models. We cover the different architectures and techniques used in these studies and the performance and limitations of these models. Moreover, we have established a public GitHub repository where we regularly upload the most recent articles, open data, and source code. The repository is available at: \url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Abdelrahman Abdallah (29 papers)
  2. Bhawna Piryani (14 papers)
  3. Adam Jatowt (58 papers)
Github Logo Streamline Icon: https://streamlinehq.com