Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Metric Multi-View Hashing for Multimedia Retrieval (2304.06358v1)

Published 13 Apr 2023 in cs.CV and cs.MM

Abstract: Learning the hash representation of multi-view heterogeneous data is an important task in multimedia retrieval. However, existing methods fail to effectively fuse the multi-view features and utilize the metric information provided by the dissimilar samples, leading to limited retrieval precision. Current methods utilize weighted sum or concatenation to fuse the multi-view features. We argue that these fusion methods cannot capture the interaction among different views. Furthermore, these methods ignored the information provided by the dissimilar samples. We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems. Extensive empirical evidence is presented to show that gate-based fusion is better than typical methods. We introduce deep metric learning to the multi-view hashing problems, which can utilize metric information of dissimilar samples. On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin (up to 15.28 mean Average Precision (mAP) improvement).

Citations (7)

Summary

We haven't generated a summary for this paper yet.