Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing Odometry, UWB Ranging, and Spatial Detections for Relative Multi-Robot Localization (2304.06264v2)

Published 13 Apr 2023 in cs.RO

Abstract: This letter presents a cooperative relative multi-robot localization design and experimental study. We propose a flexible Monte Carlo approach leveraging a particle filter to estimate relative states. The estimation can be based on inter-robot Ultra-Wideband (UWB) ranging and onboard odometry alone or dynamically integrated with cooperative spatial object detections from stereo cameras mounted on each robot. The main contributions of this work are as follows. First, we show that a single UWB range is enough to estimate the accurate relative states of two robots when fusing odometry measurements. Second, our experiments also demonstrate that our approach surpasses traditional methods, namely, multilateration, in terms of accuracy. Third, to further increase accuracy, we allow for the integration of cooperative spatial detections. Finally, we show how ROS 2 and Zenoh can be integrated to build a scalable wireless communication solution for multi-robot systems. The experimental validation includes real-time deployment and autonomous navigation based on the relative positioning method. It is worth mentioning that we also address the challenges for UWB-ranging error mitigation for mobile transceivers. The code is available at https://github.com/TIERS/uwb-cooperative-mrs-localization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. D.-H. Kim, A. Farhad, and J.-Y. Pyun, “Uwb positioning system based on lstm classification with mitigated nlos effects,” IEEE Internet of Things Journal, 2022.
  2. Y. Xianjia, L. Qingqing, J. P. Queralta, J. Heikkonen, and T. Westerlund, “Applications of uwb networks and positioning to autonomous robots and industrial systems,” in 2021 10th Mediterranean Conference on Embedded Computing (MECO).   IEEE, 2021, pp. 1–6.
  3. H. Xu, Y. Zhang, B. Zhou, L. Wang, X. Yao, G. Meng, and S. Shen, “Omni-swarm: A decentralized omnidirectional visual–inertial–uwb state estimation system for aerial swarms,” IEEE Transactions on Robotics, 2022.
  4. Z. Xun, J. Huang, Z. Li, C. Xu, F. Gao, and Y. Cao, “Crepes: Cooperative relative pose estimation towards real-world multi-robot systems,” arXiv preprint arXiv:2302.01036, 2023.
  5. Y. Xianjia, L. Qingqing, J. P. Queralta, J. Heikkonen, and T. Westerlund, “Cooperative uwb-based localization for outdoors positioning and navigation of uavs aided by ground robots,” in 2021 IEEE International Conference on Autonomous Systems (ICAS).   IEEE, 2021, pp. 1–5.
  6. K. Zhang, C. Shen, Q. Zhou, H. Wang, Q. Gao, and Y. Chen, “A combined gps uwb and marg locationing algorithm for indoor and outdoor mixed scenario,” Cluster computing, vol. 22, no. 3, pp. 5965–5974, 2019.
  7. H. Xu, L. Wang, Y. Zhang, K. Qiu, and S. Shen, “Decentralized visual-inertial-uwb fusion for relative state estimation of aerial swarm,” in 2020 IEEE international conference on robotics and automation (ICRA).   IEEE, 2020, pp. 8776–8782.
  8. J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision,” Ieee Access, vol. 8, pp. 191 617–191 643, 2020.
  9. T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4758–4765.
  10. M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, “A review of monocular visual odometry,” The Visual Computer, vol. 36, no. 5, pp. 1053–1065, 2020.
  11. T.-M. Nguyen, S. Yuan, M. Cao, T. H. Nguyen, and L. Xie, “Viral slam: Tightly coupled camera-imu-uwb-lidar slam,” arXiv preprint arXiv:2105.03296, 2021.
  12. A. Cramariuc, L. Bernreiter, F. Tschopp, M. Fehr, V. Reijgwart, J. Nieto, R. Siegwart, and C. Cadena, “maplab 2.0–a modular and multi-modal mapping framework,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 520–527, 2022.
  13. M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni, F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart et al., “Cerberus in the darpa subterranean challenge,” Science Robotics, vol. 7, no. 66, p. eabp9742, 2022.
  14. Y. Cao and G. Beltrame, “Vir-slam: Visual, inertial, and ranging slam for single and multi-robot systems,” Autonomous Robots, vol. 45, pp. 905–917, 2021.
  15. E. R. Boroson, R. Hewitt, N. Ayanian, and J.-P. de la Croix, “Inter-robot range measurements in pose graph optimization,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4806–4813.
  16. W. Zhao, J. Panerati, and A. P. Schoellig, “Learning-based bias correction for time difference of arrival ultra-wideband localization of resource-constrained mobile robots,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3639–3646, 2021.
  17. J. P. Queralta, C. M. Almansa, F. Schiano, D. Floreano, and T. Westerlund, “Uwb-based system for uav localization in gnss-denied environments: Characterization and dataset,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 4521–4528.
  18. S. Güler, M. Abdelkader, and J. S. Shamma, “Peer-to-peer relative localization of aerial robots with ultrawideband sensors,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 1981–1996, 2020.
  19. A. Poulose and D. S. Han, “Uwb indoor localization using deep learning lstm networks,” Applied Sciences, vol. 10, no. 18, p. 6290, 2020.
  20. T. Wang, K. Hu, Z. Li, K. Lin, J. Wang, and Y. Shen, “A semi-supervised learning approach for uwb ranging error mitigation,” IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 688–691, 2020.
  21. M. Ridolfi, J. Fontaine, B. V. Herbruggen, W. Joseph, J. Hoebeke, and E. D. Poorter, “Uwb anchor nodes self-calibration in nlos conditions: A machine learning and adaptive phy error correction approach,” Wireless Networks, vol. 27, no. 4, pp. 3007–3023, 2021.
  22. J. Fontaine, M. Ridolfi, B. Van Herbruggen, A. Shahid, and E. De Poorter, “Edge inference for uwb ranging error correction using autoencoders,” IEEE access, vol. 8, pp. 139 143–139 155, 2020.
  23. H. Wang, X. Wang, Y. Xue, and Y. Jiang, “Uwb-based indoor localization using a hybrid wknn-lstm algorithm,” in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1.   IEEE, 2020, pp. 1720–1725.
  24. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074, 2022.
  25. J. Zhang, F. Keramat, X. Yu, D. M. Hern, J. P. Queralta, and T. Westerlund, “Distributed robotic systems in the edge-cloud continuum with ros 2: a review on novel architectures and technology readiness,” arXiv preprint arXiv:2211.00985, 2022.
Citations (2)

Summary

We haven't generated a summary for this paper yet.