Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Diophantine problem in Chevalley groups (2304.06259v1)

Published 13 Apr 2023 in math.NT, math.GR, and math.LO

Abstract: In this paper we study the Diophantine problem in Chevalley groups $G_\pi (\Phi,R)$, where $\Phi$ is an indecomposable root system of rank $> 1$, $R$ is an arbitrary commutative ring with $1$. We establish a variant of double centralizer theorem for elementary unipotents $x_\alpha(1)$. This theorem is valid for arbitrary commutative rings with $1$. The result is principle to show that any one-parametric subgroup $X_\alpha$, $\alpha \in \Phi$, is Diophantine in $G$. Then we prove that the Diophantine problem in $G_\pi (\Phi,R)$ is polynomial time equivalent (more precisely, Karp equivalent) to the Diophantine problem in $R$. This fact gives rise to a number of model-theoretic corollaries for specific types of rings.

Summary

We haven't generated a summary for this paper yet.