Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explanation of Face Recognition via Saliency Maps (2304.06118v1)

Published 12 Apr 2023 in cs.CV and eess.IV

Abstract: Despite the significant progress in face recognition in the past years, they are often treated as "black boxes" and have been criticized for lacking explainability. It becomes increasingly important to understand the characteristics and decisions of deep face recognition systems to make them more acceptable to the public. Explainable face recognition (XFR) refers to the problem of interpreting why the recognition model matches a probe face with one identity over others. Recent studies have explored use of visual saliency maps as an explanation, but they often lack a deeper analysis in the context of face recognition. This paper starts by proposing a rigorous definition of explainable face recognition (XFR) which focuses on the decision-making process of the deep recognition model. Following the new definition, a similarity-based RISE algorithm (S-RISE) is then introduced to produce high-quality visual saliency maps. Furthermore, an evaluation approach is proposed to systematically validate the reliability and accuracy of general visual saliency-based XFR methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuhang Lu (31 papers)
  2. Touradj Ebrahimi (22 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.