Nearly Critical Superfluids in Keldysh-Schwinger Formalism (2304.06008v2)
Abstract: We examine the effective theory of critical dynamics near superfluid phase transitions in the framework of the Keldysh-Schwinger formalism. We focus on the sector capturing the dynamics of the complex order parameter and the conserved current corresponding to the broken global symmetry. After constructing the theory up to quadratic order in the $a$-fields, we compare the resulting stochastic system with Model F as well as with holography. We highlight the role of a time independent gauge symmetry of the effective theory also known as ``chemical shift". Finally, we consider the limiting behaviour at energies much lower than the gap of the amplitude mode by integrating out the high energy degrees of freedom to reproduce the effective theory of superfluids.
- L. Van Hove, “Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals,” Phys. Rev. 95 (Sep, 1954) 1374–1384. https://link.aps.org/doi/10.1103/PhysRev.95.1374.
- L. D. Landau and I. M. Khalatnikov, “On the anomalous absorption of sound near a second order phase transition point,” in Collected Papers of L.D. Landau, D. Ter Haar, ed., pp. 626–629. Pergamon, 1965. https://www.sciencedirect.com/science/article/pii/B9780080105864500870.
- K. Kawasaki, “Anomalous spin diffusion in ferromagnetic spin systems,” Journal of Physics and Chemistry of Solids 28 no. 7, (1967) 1277–1283. https://www.sciencedirect.com/science/article/pii/0022369767900716.
- M. Fixman, “Radius of gyration of polymer chains,” The Journal of Chemical Physics 36 no. 2, (1962) 306–310, https://doi.org/10.1063/1.1732501. https://doi.org/10.1063/1.1732501.
- K. Kawasaki, “Correlation-function approach to the transport coefficients near the critical point. i,” Phys. Rev. 150 (Oct, 1966) 291–306. https://link.aps.org/doi/10.1103/PhysRev.150.291.
- K. Kawasaki, “Kinetic equations and time correlation functions of critical fluctuations,” Annals of Physics 61 no. 1, (1970) 1–56. https://www.sciencedirect.com/science/article/pii/0003491670903751.
- L. P. Kadanoff and J. Swift, “Transport coefficients near the liquid-gas critical point,” Phys. Rev. 166 (Feb, 1968) 89–101. https://link.aps.org/doi/10.1103/PhysRev.166.89.
- K. G. Wilson and J. Kogut, “The renormalization group and the ε𝜀\varepsilonitalic_ε expansion,” Phys. Rep. 12 no. 2, (Aug., 1974) 75–199.
- P. C. Hohenberg and B. I. Halperin, “Theory of dynamic critical phenomena,” Rev. Mod. Phys. 49 (Jul, 1977) 435–479. https://link.aps.org/doi/10.1103/RevModPhys.49.435.
- F. M. Haehl, R. Loganayagam, and M. Rangamani, “Topological sigma models & dissipative hydrodynamics,” JHEP 04 (2016) 039, arXiv:1511.07809 [hep-th].
- M. Crossley, P. Glorioso, and H. Liu, “Effective field theory of dissipative fluids,” JHEP 09 (2017) 095, arXiv:1511.03646 [hep-th].
- R. Kubo, “Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems,” J. Phys. Soc. Jap. 12 (1957) 570–586.
- P. C. Martin and J. S. Schwinger, “Theory of many particle systems. 1.,” Phys. Rev. 115 (1959) 1342–1373.
- X. Chen-Lin, L. V. Delacrétaz, and S. A. Hartnoll, “Theory of diffusive fluctuations,” Phys. Rev. Lett. 122 no. 9, (2019) 091602, arXiv:1811.12540 [hep-th].
- A. Jain and P. Kovtun, “Late Time Correlations in Hydrodynamics: Beyond Constitutive Relations,” Phys. Rev. Lett. 128 no. 7, (2022) 071601, arXiv:2009.01356 [hep-th].
- A. Jain, P. Kovtun, A. Ritz, and A. Shukla, “Hydrodynamic effective field theory and the analyticity of hydrostatic correlators,” JHEP 02 (2021) 200, arXiv:2011.03691 [hep-th].
- H. Mori, “Transport, Collective Motion, and Brownian Motion*),” Progress of Theoretical Physics 33 no. 3, (03, 1965) 423–455, https://academic.oup.com/ptp/article-pdf/33/3/423/5428510/33-3-423.pdf. https://doi.org/10.1143/PTP.33.423.
- M. Lax, “Fluctuations from the nonequilibrium steady state,” Rev. Mod. Phys. 32 (Jan, 1960) 25–64. https://link.aps.org/doi/10.1103/RevModPhys.32.25.
- H. Liu and P. Glorioso, “Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics,” PoS TASI2017 (2018) 008, arXiv:1805.09331 [hep-th].
- S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, “Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion,” Phys. Rev. D 85 (2012) 085029, arXiv:1107.0731 [hep-th].
- I. Khalatnikov and V. Lebedev, “Relativistic hydrodynamics of a superfluid liquid,” Physics Letters A 91 no. 2, (1982) 70–72. https://www.sciencedirect.com/science/article/pii/0375960182902687.
- C. P. Herzog, N. Lisker, P. Surowka, and A. Yarom, “Transport in holographic superfluids,” JHEP 08 (2011) 052, arXiv:1101.3330 [hep-th].
- J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and A. Yarom, “A Theory of first order dissipative superfluid dynamics,” JHEP 05 (2014) 147, arXiv:1105.3733 [hep-th].
- K. Damle and S. Sachdev, “Nonzero-temperature transport near quantum critical points,” Phys. Rev. B56 no. 14, (1997) 8714, arXiv:cond-mat/9705206 [cond-mat.str-el].
- J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2 (1961) 407–432.
- L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz. 47 (1964) 1515–1527.
- A. Kapustin and L. Mrini, “The Universal Time-Dependent Ginzburg-Landau theory,” (9, 2022) , arXiv:2209.03391 [cond-mat.supr-con].
- A. Donos and P. Kailidis, “Nearly critical holographic superfluids,” JHEP 12 (2022) 028, arXiv:2210.06513 [hep-th].
- B. I. Halperin, P. C. Hohenberg, and S.-k. Ma, “Renormalization-group methods for critical dynamics: 1. Recursion relations and effects of energy conservation,” Phys. Rev. B 10 (1974) 139–153.
- A. Donos, P. Kailidis, and C. Pantelidou, “Dissipation in holographic superfluids,” JHEP 09 (2021) 134, arXiv:2107.03680 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.