Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On heavy-tailed risks under Gaussian copula: the effects of marginal transformation (2304.05004v1)

Published 11 Apr 2023 in q-fin.RM, math.PR, and stat.AP

Abstract: In this paper, we compute multivariate tail risk probabilities where the marginal risks are heavy-tailed and the dependence structure is a Gaussian copula. The marginal heavy-tailed risks are modeled using regular variation which leads to a few interesting consequences. First, as the threshold increases, we note that the rate of decay of probabilities of tail sets vary depending on the type of tail sets considered and the Gaussian correlation matrix. Second, we discover that although any multivariate model with a Gaussian copula admits the so called asymptotic tail independence property, the joint tail behavior under heavier tailed marginal variables is structurally distinct from that under Gaussian marginal variables. The results obtained are illustrated using examples and simulations.

Summary

We haven't generated a summary for this paper yet.