Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can SAM Segment Anything? When SAM Meets Camouflaged Object Detection (2304.04709v2)

Published 10 Apr 2023 in cs.CV

Abstract: SAM is a segmentation model recently released by Meta AI Research and has been gaining attention quickly due to its impressive performance in generic object segmentation. However, its ability to generalize to specific scenes such as camouflaged scenes is still unknown. Camouflaged object detection (COD) involves identifying objects that are seamlessly integrated into their surroundings and has numerous practical applications in fields such as medicine, art, and agriculture. In this study, we try to ask if SAM can address the COD task and evaluate the performance of SAM on the COD benchmark by employing maximum segmentation evaluation and camouflage location evaluation. We also compare SAM's performance with 22 state-of-the-art COD methods. Our results indicate that while SAM shows promise in generic object segmentation, its performance on the COD task is limited. This presents an opportunity for further research to explore how to build a stronger SAM that may address the COD task. The results of this paper are provided in \url{https://github.com/luckybird1994/SAMCOD}.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub