Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular solutions for space-time fractional equations in a bounded domain (2304.04431v1)

Published 10 Apr 2023 in math.AP

Abstract: This paper is devoted to describing a linear diffusion problem involving fractional-in-time derivatives and self-adjoint integro-differential space operators posed in bounded domains. One main concern of our paper is to deal with singular boundary data which are typical of fractional diffusion operators in space, and the other one is the consideration of the fractional-in-time Caputo and Riemann--Liouville derivatives in a unified way. We first construct classical solutions of our problems using the spectral theory and discussing the corresponding fractional-in-time ordinary differential equations. We take advantage of the duality between these fractional-in-time derivatives to introduce the notion of weak-dual solution for weighted-integrable data. As the main result of the paper, we prove the well-posedness of the initial and boundary-value problems in this sense.

Summary

We haven't generated a summary for this paper yet.