Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Filtering one-way Einstein-Podolsky-Rosen steering (2304.04210v3)

Published 9 Apr 2023 in quant-ph

Abstract: Einstein-Podolsky-Rosen (EPR) steering, a fundamental concept of quantum nonlocality, describes one observer's capability to remotely affect another distant observer's state by local measurements. Unlike quantum entanglement and Bell nonlocality, both associated with the symmetric quantum correlation, EPR steering depicts the unique asymmetric property of quantum nonlocality. With the local filter operation in which some system components are discarded, quantum nonlocality can be distilled to enhance the nonlocal correlation, and even the hidden nonlocality can be activated. However, asymmetric quantum nonlocality in the filter operation still lacks a well-rounded investigation, especially considering the discarded parts where quantum nonlocal correlations may still exist with probabilities. Here, in both theory and experiment, we investigate the effect of reusing the discarded particles from local filter. We observe all configurations of EPR steering simultaneously and other intriguing evolution of asymmetric quantum nonlocality, such as reversing the direction of one-way EPR steering. This work provides a perspective to answer "What is the essential role of utilizing quantum steering as a resource?", and demonstrates a practical toolbox for manipulating asymmetric quantum systems with significant potential applications in quantum information tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. J. S. Bell, On the einstein podolsky rosen paradox, Physics 1, 195 (1964).
  2. A. Aspect, P. Grangier, and G. Roger, Experimental tests of realistic local theories via bell’s theorem, Phys. Rev. Lett. 47, 460 (1981).
  3. E. Schrödinger, Discussion of probability relations between separated systems, Math. Proc. Cambridge Philos. Soc 31, 555–563 (1935).
  4. E. Schrödinger, Probability relations between separated systems, Math. Proc. Cambridge Philos. Soc 32, 446–452 (1936).
  5. A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935).
  6. M. Piani and J. Watrous, Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 114, 060404 (2015).
  7. R. Gallego and L. Aolita, Resource theory of steering, Phys. Rev. X 5, 041008 (2015).
  8. N. Gisin, Hidden quantum nonlocality revealed by local filters, Physics Letters. A 210, 151 (1996).
  9. M. Horodecki, P. Horodecki, and R. Horodecki, Inseparable two spin- 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG density matrices can be distilled to a singlet form, Phys. Rev. Lett. 78, 574 (1997).
  10. L. Masanes, Y.-C. Liang, and A. C. Doherty, All bipartite entangled states display some hidden nonlocality, Phys. Rev. Lett. 100, 090403 (2008).
  11. M. Mishra, R. Sengupta, and Arvind, Increasing distillable key rate from bound entangled states by using local filtration, Phys. Rev. A 102, 032415 (2020).
  12. L. Zhou, W. Zhong, and Y.-B. Sheng, Purification of the residual entanglement, Opt. Express 28, 2291 (2020).
  13. H.-K. Lo, M. Curty, and K. Tamaki, Secure quantum key distribution, Nat. Photonics 8, 595 (2014).
  14. H. J. Kimble, The quantum internet, Nature 453, 1023 (2008).
  15. M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: Is there a “bound” entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998).
  16. L. Tendick, H. Kampermann, and D. Bruß, Activation of nonlocality in bound entanglement, Phys. Rev. Lett. 124, 050401 (2020).
  17. P. Horodecki, Ł. Rudnicki, and K. Życzkowski, Five open problems in quantum information theory, PRX Quantum 3, 010101 (2022).
  18. Y.-Z. Zhen et al., Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle, Phys. Rev. A 93, 012108 (2016).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com