Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offline Uncertainty Sampling in Data-driven Stochastic MPC (2304.03088v1)

Published 6 Apr 2023 in eess.SY and cs.SY

Abstract: In this work, we exploit an offline-sampling based strategy for the constrained data-driven predictive control of an unknown linear system subject to random measurement noise. The strategy uses only past measured, potentially noisy data in a non-parametric system representation and does not require any prior model identification. The approximation of chance constraints using uncertainty sampling leads to efficient constraint tightening. Under mild assumptions, robust recursive feasibility and closed-loop constraint satisfaction is shown. In a simulation example, we provide evidence for the improved control performance of the proposed control scheme in comparison to a purely robust data-driven predictive control approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.