Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Heavy-tailed Features in High Dimensions: a Superstatistical Approach (2304.02912v3)

Published 6 Apr 2023 in stat.ML, cond-mat.dis-nn, cs.LG, math.ST, and stat.TH

Abstract: We characterise the learning of a mixture of two clouds of data points with generic centroids via empirical risk minimisation in the high dimensional regime, under the assumptions of generic convex loss and convex regularisation. Each cloud of data points is obtained via a double-stochastic process, where the sample is obtained from a Gaussian distribution whose variance is itself a random parameter sampled from a scalar distribution $\varrho$. As a result, our analysis covers a large family of data distributions, including the case of power-law-tailed distributions with no covariance, and allows us to test recent "Gaussian universality" claims. We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and we analytically characterise the separability transition.

Citations (6)

Summary

We haven't generated a summary for this paper yet.