Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection (2304.01492v5)

Published 4 Apr 2023 in cs.CL

Abstract: The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations. More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing the interaction of user opinions, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm to mine effective clues simultaneously from post semantics and propagation structure. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three event-level data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hongzhan Lin (33 papers)
  2. Jing Ma (136 papers)
  3. Ruichao Yang (9 papers)
  4. Zhiwei Yang (43 papers)
  5. Mingfei Cheng (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.