Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion (2304.00909v1)

Published 3 Apr 2023 in math.NA, cs.LG, and cs.NA

Abstract: The use of Physics-informed neural networks (PINNs) has shown promise in solving forward and inverse problems of fractional diffusion equations. However, due to the fact that automatic differentiation is not applicable for fractional derivatives, solving fractional diffusion equations using PINNs requires addressing additional challenges. To address this issue, this paper proposes an extension to PINNs called Laplace-based fractional physics-informed neural networks (Laplace-fPINNs), which can effectively solve the forward and inverse problems of fractional diffusion equations. This approach avoids introducing a mass of auxiliary points and simplifies the loss function. We validate the effectiveness of the Laplace-fPINNs approach using several examples. Our numerical results demonstrate that the Laplace-fPINNs method can effectively solve both the forward and inverse problems of high-dimensional fractional diffusion equations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.