Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits (2303.18187v3)

Published 30 Mar 2023 in cs.NE and cs.LG

Abstract: Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and {the lack of energy efficiency} inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks and propose contrastive-signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.

Citations (12)

Summary

We haven't generated a summary for this paper yet.