Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness-Aware Data Valuation for Supervised Learning (2303.16963v1)

Published 29 Mar 2023 in cs.LG and cs.CY

Abstract: Data valuation is a ML field that studies the value of training instances towards a given predictive task. Although data bias is one of the main sources of downstream model unfairness, previous work in data valuation does not consider how training instances may influence both performance and fairness of ML models. Thus, we propose Fairness-Aware Data vauatiOn (FADO), a data valuation framework that can be used to incorporate fairness concerns into a series of ML-related tasks (e.g., data pre-processing, exploratory data analysis, active learning). We propose an entropy-based data valuation metric suited to address our two-pronged goal of maximizing both performance and fairness, which is more computationally efficient than existing metrics. We then show how FADO can be applied as the basis for unfairness mitigation pre-processing techniques. Our methods achieve promising results -- up to a 40 p.p. improvement in fairness at a less than 1 p.p. loss in performance compared to a baseline -- and promote fairness in a data-centric way, where a deeper understanding of data quality takes center stage.

Citations (2)

Summary

We haven't generated a summary for this paper yet.