Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Communication-Efficient Multisensor Track Association via Measurement Transformation (Extended Version) (2303.16555v3)

Published 29 Mar 2023 in cs.IT and math.IT

Abstract: Multisensor track-to-track fusion for target tracking involves two primary operations: track association and estimation fusion. For estimation fusion, lossless measurement transformation of sensor measurements has been proposed for single target tracking. In this paper, we investigate track association which is a fundamental and important problem for multitarget tracking. First, since the optimal track association problem is a multi-dimensional assignment (MDA) problem, we demonstrate that MDA-based data association (with and without prior track information) using linear transformations of track measurements is lossless, and is equivalent to that using raw track measurements. Second, recent superior scalability and performance of belief propagation (BP) algorithms enable new real-time applications of multitarget tracking with resource-limited devices. Thus, we present a BP-based multisensor track association method with transformed measurements and show that it is equivalent to that with raw measurements. Third, considering communication constraints, it is more beneficial for local sensors to send in compressed data. Two analytical lossless transformations for track association are provided, and it is shown that their communication requirements from each sensor to the fusion center are less than those of fusion with raw track measurements. Numerical examples for tracking an unknown number of targets verify that track association with transformed track measurements has the same performance as that with raw measurements and requires fewer communication bandwidths.

Summary

We haven't generated a summary for this paper yet.