Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Chain-of-Thought Diffusion Models (2303.16187v2)

Published 28 Mar 2023 in cs.CV and cs.LG

Abstract: Recent progress with conditional image diffusion models has been stunning, and this holds true whether we are speaking about models conditioned on a text description, a scene layout, or a sketch. Unconditional image diffusion models are also improving but lag behind, as do diffusion models which are conditioned on lower-dimensional features like class labels. We propose to close the gap between conditional and unconditional models using a two-stage sampling procedure. In the first stage we sample an embedding describing the semantic content of the image. In the second stage we sample the image conditioned on this embedding and then discard the embedding. Doing so lets us leverage the power of conditional diffusion models on the unconditional generation task, which we show improves FID by 25-50% compared to standard unconditional generation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.