Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbounded expansion of polynomials and products (2303.15910v2)

Published 28 Mar 2023 in math.NT and math.CO

Abstract: Given $d,s \in \mathbb{N}$, a finite set $A \subseteq \mathbb{Z}$ and polynomials $\varphi_1, \dots, \varphi_{s} \in \mathbb{Z}[x]$ such that $1 \leq deg \varphi_i \leq d$ for every $1 \leq i \leq s$, we prove that [ |A{(s)}| + |\varphi_1(A) + \dots + \varphi_s(A) | \gg_{s,d} |A|{\eta_s} , ] for some $\eta_s \gg_{d} \log s / \log \log s$. Moreover if $\varphi_i(0) \neq 0$ for every $1 \leq i \leq s$, then [ |A{(s)}| + |\varphi_1(A) \dots \varphi_s(A) | \gg_{s,d} |A|{\eta_s}. ] These generalise and strengthen previous results of Bourgain--Chang, P\'{a}lv\"{o}lgyi--Zhelezov and Hanson--Roche-Newton--Zhelezov. We derive these estimates by proving the corresponding low-energy decompositions. The latter furnish further applications to various problems of a sum-product flavour, including questions concerning large additive and multiplicative Sidon sets in arbitrary sets of integers.

Summary

We haven't generated a summary for this paper yet.