Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Enhanced Graph Neural Networks for Graph Completion (2303.15487v3)

Published 27 Mar 2023 in cs.AI, cs.LG, cs.LO, and cs.SC

Abstract: Graph data is omnipresent and has a wide variety of applications, such as in natural science, social networks, or the semantic web. However, while being rich in information, graphs are often noisy and incomplete. As a result, graph completion tasks, such as node classification or link prediction, have gained attention. On one hand, neural methods, such as graph neural networks, have proven to be robust tools for learning rich representations of noisy graphs. On the other hand, symbolic methods enable exact reasoning on graphs.We propose Knowledge Enhanced Graph Neural Networks (KeGNN), a neuro-symbolic framework for graph completion that combines both paradigms as it allows for the integration of prior knowledge into a graph neural network model.Essentially, KeGNN consists of a graph neural network as a base upon which knowledge enhancement layers are stacked with the goal of refining predictions with respect to prior knowledge.We instantiate KeGNN in conjunction with two state-of-the-art graph neural networks, Graph Convolutional Networks and Graph Attention Networks, and evaluate KeGNN on multiple benchmark datasets for node classification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.