Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Generation of Multiple-Choice Questions (2303.14576v1)

Published 25 Mar 2023 in cs.CL

Abstract: Creating multiple-choice questions to assess reading comprehension of a given article involves generating question-answer pairs (QAPs) and adequate distractors. We present two methods to tackle the challenge of QAP generations: (1) A deep-learning-based end-to-end question generation system based on T5 Transformer with Preprocessing and Postprocessing Pipelines (TP3). We use the finetuned T5 model for our downstream task of question generation and improve accuracy using a combination of various NLP tools and algorithms in preprocessing and postprocessing to select appropriate answers and filter undesirable questions. (2) A sequence-learning-based scheme to generate adequate QAPs via meta-sequence representations of sentences. A meta-sequence is a sequence of vectors comprising semantic and syntactic tags. we devise a scheme called MetaQA to learn meta sequences from training data to form pairs of a meta sequence for a declarative sentence and a corresponding interrogative sentence. The TP3 works well on unseen data, which is complemented by MetaQA. Both methods can generate well-formed and grammatically correct questions. Moreover, we present a novel approach to automatically generate adequate distractors for a given QAP. The method is a combination of part-of-speech tagging, named-entity tagging, semantic-role labeling, regular expressions, domain knowledge bases, word embeddings, word edit distance, WordNet, and other algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.