Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observational constrained $F(R, \mathcal{G})$ gravity cosmological model and the dynamical system analysis (2303.14575v2)

Published 25 Mar 2023 in gr-qc

Abstract: In this paper, we have analyzed the geometrical and dynamical parameters of $\mathcal{F}(R, \mathcal{G})=\alpha R2 \mathcal{G}\beta$ cosmological model, ($R$, $\mathcal{G}$ being the Ricci scalar and Gauss-Bonnet invariant respectively), constraining the parameters through the cosmological data sets. It is exhibited that the model admits a viable radiation era, and early deceleration followed by late-time acceleration in the matter-dominated era. From the phase-space, portrait stability criterion has been analysed, restricting the parameter $\beta$, different from $\beta=-1$. Additionally, we have explored the stability of the model from the behavior of critical points and obtained the present value of the density parameter for matter-dominated and dark energy components, which are identical to those obtained through cosmological data sets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. S. F. Daniel, R. R. Caldwell, A. Cooray, and A. Melchiorri, “Large scale structure as a probe of gravitational slip,” Phys. Rev. D 77 (2008) no. 12, 103513.
  2. S. Capozziello and M. De Laurentis, “Extended Theories of Gravity,” Phys. Rept. 509 (2011) 167–321, arXiv:1108.6266 [gr-qc].
  3. S. C. V. Faraoni, “Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics,” Fundam. Theor. Phys. 170 (2010) no. 1, 428.
  4. S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: from F⁢(R)𝐹𝑅F(R)italic_F ( italic_R ) theory to Lorentz non-invariant models,” Phys. Rep. 505 (2011) no. 2-4, 59–144, arXiv:1011.0544 [gr-qc].
  5. S. Nojiri and S. D. Odintsov, “Introduction to Modified Gravity and Gravitational Alternative for Dark Energy,” Int. J. Geom. Meth. Mod. Phys. 04 (2007) no. 01, 115–145.
  6. S. Nojiri, S. Odintsov, and V. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution,” Phys. Rep. 692 (2017) 1–104.
  7. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91 (1980) no. 1, 99–102.
  8. I. de Martino, M. De Laurentis, and S. Capozziello, “Tracing the cosmic history by Gauss-Bonnet gravity,” Phys. Rev. D 102 (2020) no. 16, 063508.
  9. S. Odintsov, V. Oikonomou, and S. Banerjee, “Dynamics of inflation and dark energy from F⁢(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Nuclear Phys. B 938 (2019) 935–956.
  10. E. Elizalde, R. Myrzakulov, V. V. Obukhov, and D. Sáez-Gómez, “ΛΛ\Lambdaroman_ΛCDM epoch reconstruction from F⁢(R,G)𝐹𝑅𝐺F(R,G)italic_F ( italic_R , italic_G ) and modified Gauss-Bonnet gravities,” Classical and Quantum Gravity 27 (2010) 095007.
  11. B. Li, J. D. Barrow, and D. F. Mota, “Cosmology of modified Gauss-Bonnet gravity,” Phys. Rev. D 76 (2007) no. 9, 044027.
  12. J. M. Lattimer and A. W. Steiner, “Neutron Star Masses and Radii from Quiescent Low-Mass X-ray Binaries,” Astrophys. J. 784 (2014) no. 2, 123.
  13. A. D. Felice and S. Tsujikawa, “Construction of cosmologically viable gravity models,” Phys. Lett. B 675 (2009) no. 1, 1–8.
  14. S. Nojiri and S. D. Odintsov, “Modified Gauss-Bonnet theory as gravitational alternative for dark energy,” Phys. Lett. B 631 (2005) no. 1-2, 1–6, arXiv:hep-th/0508049.
  15. M. De Laurentis, M. Paolella, and S. Capozziello, “Cosmological inflation in F⁢(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Phys. Rev. D 91 (2015) no. 9, 083531.
  16. S. Capozziello, M. De Laurentis, and S. D. Odintsov, “Noether symmetry approach in Gauss-Bonnet Cosmology,” Mod. Phys. Lett. A 29 (2014) no. 30, 1450164.
  17. K. F. Dialektopoulos, J. L. Said, and Z. Oikonomopoulou, “Dynamical systems in Einstein-Gauss-Bonnet gravity,” arXiv (2022) 2211.06076.
  18. N. Chatzarakis and V. Oikonomou, “Autonomous dynamical system of Einstein-Gauss-Bonnet cosmologies,” Annals of Physics 419 (2020) 168216.
  19. P. Shah and G. C. Samanta, “Stability analysis for cosmological models in f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity using dynamical system analysis,” Eur. Phy. J. C 79 (2019) 414.
  20. P. Bessa, M. Campista, and A. Bernui, “Observational constraints on Starobinsky f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) cosmology from cosmic expansion and structure growth data,” Eur. Phy. J. C 82 (2022) 506.
  21. B. Bayarsaikhan, S. Khimphun, P. Rithy, and G. Tumurtushaa, “Dynamical analysis in regularized 4D Einstein-Gauss-Bonnet gravity with non-minimak coupling,” Eur. Phy. J. C 83 (2023) 238.
  22. B. Wu and B.-Q. Ma, “Spherically symmetric solution of F⁢(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity at low energy,” Phys. Rev. D 92 (2015) no. 17, 044012.
  23. A. K. Sanyal and C. Sarkar, “The role of cosmological constant in F⁢(R,𝒢)𝐹𝑅𝒢F(R,\mathcal{G})italic_F ( italic_R , caligraphic_G ) gravity,” Classical and Quantum Gravity 37 (2020) no. 5, 055010.
  24. M. Calzá, A. Casalino, O. Luongo, and L. Sebastiani, “Kinematic reconstructions of extended theories of gravity at small and intermediate redshifts,” Eur. Phy. J. P 135 (2020) no. 1, .
  25. A. Dolgov and M. Kawasaki, “Can modified gravity explain accelerated cosmic expansion?,” Phys. Lett. B 573 (2003) 1–4.
  26. C. Gruber and O. Luongo, “Cosmographic analysis of the equation of state of the universe through Padé approximations,” Phys. Rev. D 89 (2014) no. 19, 103506.
  27. Y. Yang and Y. Gong, “The evidence of cosmic acceleration and observational constraints,” J. Cosmol. Astropart. Phys. 2020 (2020) no. 06, 059.
  28. S. Capozziello, P. Martin-Moruno, and C. Rubano, “Dark energy and dust matter phases from an exact f⁢(R)𝑓𝑅f(R)italic_f ( italic_R )-cosmology model,” Phys. Lett. B 664 (2008) 12–15.
  29. O. Farooq and B. Ratra, “Hubble parameter measurement constraints on the cosmological deceleration-acceleration transition redshift,” Astrophys. J. Lett. 766 (2013) no. 1, L7.
  30. G. J. Olmo, “Post-Newtonian constraints on f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) cosmologies in metric and Palatini formalism,” Phys. Rev. D 72 (2005) no. 17, 083505.
  31. J. B. Dent, S. Dutta, and E. N. Saridakis, “f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity mimicking dynamical dark energy. Background and perturbation analysis,” J. Cosmol. Astropart. Phys. 2011 (2011) no. 01, 009–009, arXiv:1010.2215 [astro-ph.CO].
  32. M. M. Ivanov and A. V. Toporensky, “Cosmological dynamics of fourth-order gravity with a Gauss-Bonnet term,” Gravitation and Cosmology 18 (2012) 43–53.
  33. B. Mirza and F. Oboudiat, “Constraining f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity by dynamical system analysis,” J. Cosmol. Astropart. Phys. 2017 (2017) no. 11, 011–011, arXiv::1704.02593 [gr-qc].
  34. S. Bahamonde, M. Marciu, and P. Rudra, “Dynamical system analysis of generalized energy - momentum - squared gravity,” Phys. Rev. D 100 (2019) no. 14, 083511.
  35. S. A. Kadam, B. Mishra, and J. Said Levi, “Teleparallel scalar-tensor gravity through cosmological dynamical systems,” Eur. Phys. J. C 82 (2022) no. 8, 680, arXiv:2205.04231 [gr-qc].
  36. S. D. Odintsov and V. K. Oikonomou, “Dynamical systems perspective of cosmological finite-time singularities in f⁢(R)𝑓𝑅f\mathbf{(}R\mathbf{)}italic_f ( italic_R ) gravity and interacting multifluid cosmology,” Phys. Rev. D 98 (2018) no. 25, 024013.
  37. S. D. Odintsov and V. K. Oikonomou, “Effects of spatial curvature on the f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity phase space: no inflationary attractor?,” Classical and Quantum Gravity 36 (2019) no. 6, 065008.
  38. S. D. Odintsov and V. K. Oikonomou, “Autonomous dynamical system approach for f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity,” Phys. Rev. D 96 (2017) no. 16, 104049.
  39. J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D 71 (2005) no. 18, 123001.
  40. M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼similar-to\sim∼ 2,” Mon. Not. Roy. Astron. Soc.: Lett. 450 (2015) no. 1, L16–L20.
  41. N. Borghi, M. Moresco, and A. Cimatti, “Toward a Better Understanding of Cosmic Chronometers: A New Measurement of H⁢(z)𝐻𝑧H(z)italic_H ( italic_z ) at z ∼similar-to\sim∼ 0.7,” Astrophys. J. Lett. 928 (2022) no. 1, L4.
Citations (12)

Summary

We haven't generated a summary for this paper yet.