Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey on Adversarial Attack and Defense for Medical Image Analysis: Methods and Challenges (2303.14133v2)

Published 24 Mar 2023 in eess.IV, cs.CR, and cs.CV

Abstract: Deep learning techniques have achieved superior performance in computer-aided medical image analysis, yet they are still vulnerable to imperceptible adversarial attacks, resulting in potential misdiagnosis in clinical practice. Oppositely, recent years have also witnessed remarkable progress in defense against these tailored adversarial examples in deep medical diagnosis systems. In this exposition, we present a comprehensive survey on recent advances in adversarial attacks and defenses for medical image analysis with a systematic taxonomy in terms of the application scenario. We also provide a unified framework for different types of adversarial attack and defense methods in the context of medical image analysis. For a fair comparison, we establish a new benchmark for adversarially robust medical diagnosis models obtained by adversarial training under various scenarios. To the best of our knowledge, this is the first survey paper that provides a thorough evaluation of adversarially robust medical diagnosis models. By analyzing qualitative and quantitative results, we conclude this survey with a detailed discussion of current challenges for adversarial attack and defense in medical image analysis systems to shed light on future research directions. Code is available on \href{https://github.com/tomvii/Adv_MIA}{\color{red}{GitHub}}.

Citations (12)

Summary

We haven't generated a summary for this paper yet.