Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SPEC: Summary Preference Decomposition for Low-Resource Abstractive Summarization (2303.14011v1)

Published 24 Mar 2023 in cs.CL and cs.AI

Abstract: Neural abstractive summarization has been widely studied and achieved great success with large-scale corpora. However, the considerable cost of annotating data motivates the need for learning strategies under low-resource settings. In this paper, we investigate the problems of learning summarizers with only few examples and propose corresponding methods for improvements. First, typical transfer learning methods are prone to be affected by data properties and learning objectives in the pretext tasks. Therefore, based on pretrained LLMs, we further present a meta learning framework to transfer few-shot learning processes from source corpora to the target corpus. Second, previous methods learn from training examples without decomposing the content and preference. The generated summaries could therefore be constrained by the preference bias in the training set, especially under low-resource settings. As such, we propose decomposing the contents and preferences during learning through the parameter modulation, which enables control over preferences during inference. Third, given a target application, specifying required preferences could be non-trivial because the preferences may be difficult to derive through observations. Therefore, we propose a novel decoding method to automatically estimate suitable preferences and generate corresponding summary candidates from the few training examples. Extensive experiments demonstrate that our methods achieve state-of-the-art performance on six diverse corpora with 30.11%/33.95%/27.51% and 26.74%/31.14%/24.48% average improvements on ROUGE-1/2/L under 10- and 100-example settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yi-Syuan Chen (5 papers)
  2. Yun-Zhu Song (5 papers)
  3. Hong-Han Shuai (56 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.