Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Neural Architecture Search for Emotion Recognition (2303.13653v1)

Published 23 Mar 2023 in cs.CV

Abstract: Automated human emotion recognition from facial expressions is a well-studied problem and still remains a very challenging task. Some efficient or accurate deep learning models have been presented in the literature. However, it is quite difficult to design a model that is both efficient and accurate at the same time. Moreover, identifying the minute feature variations in facial regions for both macro and micro-expressions requires expertise in network design. In this paper, we proposed to search for a highly efficient and robust neural architecture for both macro and micro-level facial expression recognition. To the best of our knowledge, this is the first attempt to design a NAS-based solution for both macro and micro-expression recognition. We produce lightweight models with a gradient-based architecture search algorithm. To maintain consistency between macro and micro-expressions, we utilize dynamic imaging and convert microexpression sequences into a single frame, preserving the spatiotemporal features in the facial regions. The EmoNAS has evaluated over 13 datasets (7 macro expression datasets: CK+, DISFA, MUG, ISED, OULU-VIS CASIA, FER2013, RAF-DB, and 6 micro-expression datasets: CASME-I, CASME-II, CAS(ME)2, SAMM, SMIC, MEGC2019 challenge). The proposed models outperform the existing state-of-the-art methods and perform very well in terms of speed and space complexity.

Citations (9)

Summary

We haven't generated a summary for this paper yet.