Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibrated Out-of-Distribution Detection with a Generic Representation (2303.13148v2)

Published 23 Mar 2023 in cs.CV

Abstract: Out-of-distribution detection is a common issue in deploying vision models in practice and solving it is an essential building block in safety critical applications. Most of the existing OOD detection solutions focus on improving the OOD robustness of a classification model trained exclusively on in-distribution (ID) data. In this work, we take a different approach and propose to leverage generic pre-trained representation. We propose a novel OOD method, called GROOD, that formulates the OOD detection as a Neyman-Pearson task with well calibrated scores and which achieves excellent performance, predicated by the use of a good generic representation. Only a trivial training process is required for adapting GROOD to a particular problem. The method is simple, general, efficient, calibrated and with only a few hyper-parameters. The method achieves state-of-the-art performance on a number of OOD benchmarks, reaching near perfect performance on several of them. The source code is available at https://github.com/vojirt/GROOD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tomas Vojir (11 papers)
  2. Jan Sochman (4 papers)
  3. Rahaf Aljundi (33 papers)
  4. Jiri Matas (133 papers)
Citations (5)