Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of Probabilistic Deep Learning Methods for Autism Detection (2303.12707v1)

Published 9 Mar 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Autism Spectrum Disorder (ASD) is one neuro developmental disorder that is now widespread in the world. ASD persists throughout the life of an individual, impacting the way they behave and communicate, resulting to notable deficits consisting of social life retardation, repeated behavioural traits and a restriction in their interests. Early detection of the disorder helps in the onset treatment and helps one to lead a normal life. There are clinical approaches used in detection of autism, relying on behavioural data and in worst cases, neuroimaging. Quantitative methods involving machine learning have been studied and developed to overcome issues with clinical approaches. These quantitative methods rely on machine learning, with some complex methods based on deep learning developed to accelerate detection and diagnosis of ASD. These literature is aimed at exploring most state-of-the-art probabilistic methods in use today, characterizing them with the type of dataset they're most applied on, their accuracy according to their novel research and how well they are suited in ASD classification. The findings will purposely serve as a benchmark in selection of the model to use when performing ASD detection.

Citations (4)

Summary

We haven't generated a summary for this paper yet.