Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Image Features with Convolutional Sequence-to-sequence Network for Multilingual Visual Question Answering (2303.12671v2)

Published 22 Mar 2023 in cs.CV and cs.CL

Abstract: Visual Question Answering (VQA) is a task that requires computers to give correct answers for the input questions based on the images. This task can be solved by humans with ease but is a challenge for computers. The VLSP2022-EVJVQA shared task carries the Visual Question Answering task in the multilingual domain on a newly released dataset: UIT-EVJVQA, in which the questions and answers are written in three different languages: English, Vietnamese and Japanese. We approached the challenge as a sequence-to-sequence learning task, in which we integrated hints from pre-trained state-of-the-art VQA models and image features with Convolutional Sequence-to-Sequence network to generate the desired answers. Our results obtained up to 0.3442 by F1 score on the public test set, 0.4210 on the private test set, and placed 3rd in the competition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Triet Minh Thai (2 papers)
  2. Son T. Luu (26 papers)