Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking the backbone architecture for tiny object detection (2303.11267v1)

Published 20 Mar 2023 in cs.CV

Abstract: Tiny object detection has become an active area of research because images with tiny targets are common in several important real-world scenarios. However, existing tiny object detection methods use standard deep neural networks as their backbone architecture. We argue that such backbones are inappropriate for detecting tiny objects as they are designed for the classification of larger objects, and do not have the spatial resolution to identify small targets. Specifically, such backbones use max-pooling or a large stride at early stages in the architecture. This produces lower resolution feature-maps that can be efficiently processed by subsequent layers. However, such low-resolution feature-maps do not contain information that can reliably discriminate tiny objects. To solve this problem we design 'bottom-heavy' versions of backbones that allocate more resources to processing higher-resolution features without introducing any additional computational burden overall. We also investigate if pre-training these backbones on images of appropriate size, using CIFAR100 and ImageNet32, can further improve performance on tiny object detection. Results on TinyPerson and WiderFace show that detectors with our proposed backbones achieve better results than the current state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jinlai Ning (2 papers)
  2. Haoyan Guan (7 papers)
  3. Michael Spratling (15 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.