Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training Invertible Neural Networks as Autoencoders (2303.11239v2)

Published 20 Mar 2023 in cs.LG and cs.CV

Abstract: Autoencoders are able to learn useful data representations in an unsupervised matter and have been widely used in various machine learning and computer vision tasks. In this work, we present methods to train Invertible Neural Networks (INNs) as (variational) autoencoders which we call INN (variational) autoencoders. Our experiments on MNIST, CIFAR and CelebA show that for low bottleneck sizes our INN autoencoder achieves results similar to the classical autoencoder. However, for large bottleneck sizes our INN autoencoder outperforms its classical counterpart. Based on the empirical results, we hypothesize that INN autoencoders might not have any intrinsic information loss and thereby are not bounded to a maximal number of layers (depth) after which only suboptimal results can be achieved.

Citations (9)

Summary

We haven't generated a summary for this paper yet.