Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Language Models for Knowledge Base Completion (2303.11082v1)

Published 20 Mar 2023 in cs.CL and cs.AI

Abstract: Structured knowledge bases (KBs) are a foundation of many intelligent applications, yet are notoriously incomplete. LLMs (LMs) have recently been proposed for unsupervised knowledge base completion (KBC), yet, despite encouraging initial results, questions regarding their suitability remain open. Existing evaluations often fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we introduce a novel, more challenging benchmark dataset, and a methodology tailored for a realistic assessment of the KBC potential of LMs. For automated assessment, we curate a dataset called WD-KNOWN, which provides an unbiased random sample of Wikidata, containing over 3.9 million facts. In a second step, we perform a human evaluation on predictions that are not yet in the KB, as only this provides real insights into the added value over existing KBs. Our key finding is that biases in dataset conception of previous benchmarks lead to a systematic overestimate of LM performance for KBC. However, our results also reveal strong areas of LMs. We could, for example, perform a significant completion of Wikidata on the relations nativeLanguage, by a factor of ~21 (from 260k to 5.8M) at 82% precision, usedLanguage, by a factor of ~2.1 (from 2.1M to 6.6M) at 82% precision, and citizenOf by a factor of ~0.3 (from 4.2M to 5.3M) at 90% precision. Moreover, we find that LMs possess surprisingly strong generalization capabilities: even on relations where most facts were not directly observed in LM training, prediction quality can be high.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Blerta Veseli (2 papers)
  2. Sneha Singhania (7 papers)
  3. Simon Razniewski (49 papers)
  4. Gerhard Weikum (75 papers)
Citations (17)