Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Target-Based Extrinsic Calibration Framework for Non-Overlapping Camera-Lidar Systems Using a Motion Capture System (2303.10729v2)

Published 19 Mar 2023 in cs.RO

Abstract: In this work, we present a novel target-based lidar-camera extrinsic calibration methodology that can be used for non-overlapping field of view (FOV) sensors. Contrary to previous work, our methodology overcomes the non-overlapping FOV challenge using a motion capture system (MCS) instead of traditional simultaneous localization and mapping approaches. Due to the high relative precision of the MCS, our methodology can achieve both the high accuracy and repeatable calibrations of traditional target-based methods, regardless of the amount of overlap in the field of view of the sensors. We show using simulation that we can accurately recover extrinsic calibrations for a range of perturbations to the true calibration that would be expected in real circumstances. We also validate that high accuracy calibrations can be achieved on experimental data. Furthermore, We implement the described approach in an extensible way that allows any camera model, target shape, or feature extraction methodology to be used within our framework. We validate this implementation on two target shapes: an easy to construct cylinder target and a diamond target with a checkerboard. The cylinder target shape results show that our methodology can be used for degenerate target shapes where target poses cannot be fully constrained from a single observation, and distinct repeatable features need not be detected on the target.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder (improves camera calibration),” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2301–2306, 2004.
  2. E. S. Kim and S. Y. Park, “Extrinsic calibration of a camera-LIDAR multi sensor system using a planar chessboard,” International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2019-July, pp. 89–91, 2019.
  3. A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic camera and range sensor calibration using a single shot,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 3936–3943, 2012.
  4. H. Alismail, L. D. Baker, and B. Browning, “Automatic calibration of a range sensor and camera system,” Proceedings - 2nd Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and Transmission, 3DIMPVT 2012, pp. 286–292, 2012.
  5. S. A. Rodriguez F., V. Frémont, and P. Bonnifait, “Extrinsic calibration between a multi-layer lidar and a camera,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 214–219, 2008.
  6. A. Velas, M., Spanel, M., Materna, Z., Herout, “Calibration of RGB Camera With Velodyne LiDAR,” in Conference on Computer Graphics, Visualization and Computer Vision, 2014.
  7. C. Guindel, J. Beltran, D. Martin, and F. Garcia, “Automatic extrinsic calibration for lidar-stereo vehicle sensor setups,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2018-March, pp. 1–6, 2018.
  8. J. Domhof, K. F. Julian, and K. M. Dariu, “An extrinsic calibration tool for radar, camera and lidar,” Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019-May, pp. 8107–8113, 2019.
  9. J. Kummerle, T. Kuhner, and M. Lauer, “Automatic Calibration of Multiple Cameras and Depth Sensors with a Spherical Target,” IEEE International Conference on Intelligent Robots and Systems, pp. 5584–5591, 2018.
  10. J. Rebello, A. Fung, and S. L. Waslander, “Ac/dcc : Accurate calibration of dynamic camera clusters for visual slam,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6035–6041, 2020.
  11. J. Castorena, U. S. Kamilov, and P. T. Boufounos, “Autocalibration of lidar and optical cameras via edge alignment,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2016-May, pp. 2862–2866, 2016.
  12. J. Levinson and S. Thrun, “Automatic online calibration of cameras and lasers,” in Robotics: Science and Systems, 2013.
  13. G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice, “Automatic targetless extrinsic calibration of a 3D lidar and camera by maximizing mutual information,” Proceedings of the National Conference on Artificial Intelligence, vol. 3, pp. 2053–2059, 2012.
  14. Z. Taylor and J. Nieto, “Automatic calibration of lidar and camera images using normalized mutual information,” IEEE Conference on Robotics and Automation (ICRA), 2013.
  15. T. Scott, A. A. Morye, P. Piniés, L. M. Paz, I. Posner, and P. Newman, “Exploiting known unknowns: Scene induced cross-calibration of lidar-stereo systems,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3647–3653, 2015.
  16. A. Napier, P. Corke, and P. Newman, “Cross-calibration of push-broom 2D LIDARs and cameras in natural scenes,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 3679–3684, 2013.
  17. Z. Taylor and J. Nieto, “Motion-Based Calibration of Multimodal Sensor Extrinsics and Timing Offset Estimation,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1215–1229, 2016.
  18. N. Andreff, R. Horaud, and B. Espiau, “Robot Hand-Eye Calibration Using Structure-from-Motion,” The International Journal of Robotics Research, vol. 20, no. 3, pp. 228–248, 2001.
  19. J. Heller, M. Havlena, A. Sugimoto, and T. Pajdla, “Structure-from-motion based hand-eye calibration using L infinity minimization,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3497–3503, 2011.
  20. J. Jeong, Y. Cho, and A. Kim, “The Road is Enough! Extrinsic Calibration of Non-overlapping Stereo Camera and LiDAR using Road Information,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2831–2838, 2019.
  21. P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, “A study of vicon system positioning performance,” Sensors (Switzerland), vol. 17, no. 7, pp. 1–18, 2017.
  22. V. Usenko, N. Demmel, and D. Cremers, “The double sphere camera model,” Proceedings - 2018 International Conference on 3D Vision, 3DV 2018, pp. 552–560, 2018.
  23. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  24. S. Suzuki and K. A. Be, “Topological structural analysis of digitized binary images by border following,” Computer Vision, Graphics and Image Processing, vol. 30, no. 1, pp. 32–46, 1985.

Summary

We haven't generated a summary for this paper yet.